Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition
نویسندگان
چکیده
We investigate the optical and thermo-optical properties of amorphous TiO2–Al2O3 thin-film bilayers fabricated by atomic layer deposition (ALD). Seven samples of TiO2–Al2O3 bilayers are fabricated by growing Al2O3 films of different thicknesses on the surface of TiO2 films of constant thickness (100 nm). Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE®. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO2 films. The effects of TiO2 surface defects on the films’ thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al2O3 diffusion barrier layers. Increasing the ALD-Al2O3 thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO2. The thermo-optic coefficients of the 100 nm-thick ALD-TiO2 film and 30 nm-thick ALD-Al2O3 film in a bilayer are (0.048 ± 0.134) × 10−4 ◦C−1 and (0.680 ± 0.313) × 10−4 ◦C−1, respectively, at a temperature T = 62 ◦C.
منابع مشابه
Nanolaminate structures fabricated by ALD for reducing propagation losses and enhancing the third-order optical nonlinearities
We demonstrate a novel atomic layer deposition (ALD) process to make high quality nanocrystalline titanium dioxide (TiO2) and zinc oxide (ZnO) with intermediate Al2O3 layers to limit the crystal size. The waveguide losses of TiO2/Al2O3 nanolaminates measured using the prism coupling method for both 633 nm and 1551 nm wavelengths are as low as 0.2 ± 0.1 dB/mm with the smallest crystal size. We a...
متن کاملAntireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition
Antireflection (AR) coatings are indispensable in numerous optical applications and are increasingly demanded on highly curved optical components. In this work, optical thin films of SiO2, Al2O3, TiO2 and Ta2O5 were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions leading to a uniform film thickness on arbitrarily shaped surfaces. Al2O3/TiO2/SiO2 and ...
متن کاملBand-Gap Tuning Of Electron Beam Evaporated Cds Thin Films
The effect of evaporation rate on structural, morphological and optical properties of electron beam evaporated CdS thin films have been investigated. CdS thin film deposited by electron beam evaporation method in 12nm/min and 60nm/min evaporation rates on glass substrates. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and Atomic Force Microscopy were used to character...
متن کاملFabrication of Porous Al2O3 and TiO2 Thin film hybrid composite using Atomic Layer Deposition and Properties Study
Atomic layer deposition (ALD) has been used in advanced applications where thin layers of materials with precise thickness down to the nanometer scale are needed. Using anodic oxidation, we prepared the porous alumina. Anodic oxidation was carried out in 5 C 0.3M oxalic acid with anodizing voltages (~ 40 V) and two step anodization method. SEM shows that, these porous anodic oxides are well ali...
متن کاملCapability for Fine Tuning of the Refractive Index Sensing Properties of Long-Period Gratings by Atomic Layer Deposited Al2O3 Overlays
This work presents an application of thin aluminum oxide (Al2O3) films obtained using atomic layer deposition (ALD) for fine tuning the spectral response and refractive-index (RI) sensitivity of long-period gratings (LPGs) induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ~ 0.12 nm) of excellent quality nano-films as r...
متن کامل